НАУЧНО-ПРОИЗВОДСТВЕННАЯ ФИРМА "Аз"
Российский производитель магнитно-резонансных томографов
Понять, как напряженность (сила) магнитного поля аппарата МРТ влияет на результат обследования, поможет приведенный ниже текст из книги "Магнитный Резонанс в Медицине" профессора П.А. Ринка, председателя Европейского Форума по магнитному резонансу.
Как почти все в нашем мире, МР-томографы появляются самых разных размеров: особо-малые, малые, средние, большие и особо-большие. В силу технической природы МРТ их называют приборами с ультраслабым, слабым, средним, сильным и сверхсильным магнитными полями. Эти эпитеты относятся к напряженности постоянного магнитного поля соответствующего прибора. Эта напряженность измеряется в тесла (Тл), в единицах, несколько лет назад заменивших прежнюю единицу Гаусс (Гс), хотя Гаусс по-прежнему иногда используют (10000 Гс=1 Тл). Приборы со сверхслабым полем работают при напряженности менее 0.1 Тл, со слабым - от 0.1 до 0.5 Тл, средним - от 0.5 до 1 Тл, сильным - от 1 до 2 Тл, а со сверхсильным - более 2 Тл.
В клинической обстановке служба радиологической безопасности запрещает применение МР-томографов с полем более 2.5 Тл. Свыше этого предела поля предполагаются потенциально опасными и могут допускаться для исследовательских лабораторий.
При описании МР-аппаратуры, ученые-естественники предпочитают говорить не о полях, а о частотах. Это обусловлено тем, что различные ядра в периодической системе имеет разные МР-частоты. В поле 1 Тл, например, протоны резонируют на 42.58 МГц. Для клинической медицинской МР-томографии эти различия пока несущественны, т.к. используется только протонный МР.
Прогуливаясь по величайшей в мире коммерческой выставке радиологического оборудования на ежегодном митинге Радиологического общества Северной Америки, можно найти малые МРТ-приборы, работающие на 0.06 Тл и гигантские томографы, работающие на 2 Тл. Магниты, конечно, у них разные: ниже примерно 0.3 Тл либо постоянные магниты, либо резистивные электромагниты (с железным сердечником или без него), а выше - магнит должен быть сверхпроводящим. Каждый из указанных типов магнитов имеет свои достоинства и недостатки.
Почему встречаются малые МР-томографы со сверхслабыми полями наряду с приборами, работающими с магнитным полем в 100 раз сильнее? Почему не выживают томографы только со слабым или только с сильным полем?
Эта проблема величины магнитного поля с начала 1980-х годов расколола МРТ-сообщество. В то время МР-томографы работали в слабых полях, многие прототипы имели поле около 0.15 Тл. Исследователи не верили, что возможна томография в более сильных полях: казалось, что более высокие радиочастоты не будут равномерно пронизывать человеческое тело. Подобно многим другим предсказаниям в МРТ, это предсказание было ошибочным.
МР-томограммы тогда были очень грубыми, неотчетливыми и, вообще говоря, хуже рентгеновских, полученных на вычислительных томографах. Разработчиков МР-томографов на фирмах-изготовителях все время допрашивали: „Как можно улучшить качество МР-томографов?" Ответ был прост: „Усилить магнитное поле".
Из аналитических приложений МР было известно, что отношение сигнал/ шум возрастает с ростом поля. Чем больше это отношение, тем лучше будет изображение. Но более сильное поле требует больших градиентов, чтобы снизить влияние артефактов, обусловленных химическими сдвигами, растущими вместе с полем. Сильные градиенты увеличивают пространственное разрешение. Эти простые соображения заставили некоторых изготовителей под давлением своих разработчиков и специалистов по маркетингу сделать решительный выбор в пользу сверхпроводящих магнитных систем. Такие системы - огромные динозавроподобные изделия. Они были дорогими, сложными в изготовлении, дорогими в эксплуатации, но с их помощью было реализовано выдающееся качество изображения.
Другим аргументом в поддержку разработки томографов с сильными магнитными полями было то обстоятельство, что только они позволяли совместить МР-томографию с локальной МР-спектроскопией по ядрам углерода, фосфора и протонам. А в то время одной из целей разработки МР-интроскопии для медицины было объединение томографии и спектроскопии для одновременного получения морфологической информации и сведений о метаболизме в соответствующей точке человеческого организма. Спектроскопическая информация будет тем более детальной, чем сильнее магнитное поле.
Однако, in vivo-спектроскопия не получила распространения в клиниках, тогда как популярность МРТ росла взрывоподобно. Правилом становились специализированные на томографии МР-приборы, а комбинированные приборы и медицинская спектроскопия оставались исключениями.
Затем необходимость сильных магнитных полей в томографии стали подвергать сомнению. Техническое развитие привело к тому, что качество изображения и пространственное разрешение томографа со слабыми и средними полями стало не хуже, а иногда и лучше, чем в сильных полях, хотя тогда и отсутствовало научное обоснование этих достижений. Дополнительные исследования показали, что наиболее важный для медицинской томографии фактор, а именно, контраст тканей, по крайней мере для ряда диагностических проблем в связи с центральной нервной системой, в средних магнитных полях оказывается наилучшим, слегка убывая затем при увеличении магнитного поля.
Строгий научный подход к этой проблеме и тогда еще не был разработан. На конференции 1983 года в Сан-Франциско дебаты на эту тему перенеслись из зала в коридор и чуть не дошли до драки между сторонниками идеологии сильных полей, чья компания сосредоточила все свои усилия на томографах с полем 1.5 Тл, и сторонником слабых полей, чья компания пропагандировала томограф с полем 0.35 Тл. Линия фронта в этой войне была непроходимой, окопы - глубокими. Вы должны были принадлежать либо к одному лагерю, либо к другому. Все большие компании переметнулись к сторонникам сильных полей и рекламировали эти поля со всей мощью своих отделов маркетинга. В некоторых странах субсидии на разработку систем с сильными полями обошлись налогоплательщикам в миллионы долларов.
Однако, в одно прекрасное утро покупатели МРТ проснулись и увидели ров заполненным. Одна компания решила выйти на рынок приборов со средними полями, другая - последовала за ней, а третья - пошла на компромисс, решив создать МР-томограф, работающий с полем, промежуточным между принятыми до того „стандартами".
Причины этих действий никогда публично не обсуждались, но медики убедились в том, что тот выигрыш в чувствительности, который рост магнитного поля дает в МР-спектроскопии, не производит аналогичного эффекта в медицинской МР-томографии, если речь идет о всем теле человека.
Дело в том, что тело человека с ростом магнитного поля порождает дополнительный шум, ограничивающий суммарный рост чувствительности. Кроме того, никто не мог предвидеть, что в сильных полях возникнут такие новые проблемы, как артефакты, обусловленные непроизвольными движениями пациента. Вполне очевидны были опасности, связанные с ростом поля, а также неизбежное удорожание техники. А между тем томографы со слабыми и средними полями становились все меньше при неуклонном улучшении обеспечиваемых ими диагностических результатов.
Разумеется, томографы с сильными полями оставались хорошим диагностическим средством и сохраняли свой рынок. Определенные преимущества за ними сохранялись: сверхбыстрые экспозиции, например, все-таки легче обеспечить в сильных полях за счет роста аппаратурной чувствительности.
Но, скорее всего, в будущем большинство МР-томографов будут работать в слабых и средних полях. Соотношение будет зависеть от конкретного рынка. Основная доля МР-томографов со слабыми и сильными полем будет установлена в Японии, за ней будет следовать Европа, в меньшей степени - США. Новое поколение пользователей МРТ, небольшие больницы и частные врачи, будут предпочитать более дешевые МР-томографы, которые обеспечивают возможность проведения подавляющего большинства наиболее часто встречающихся диагностических обследований. Большие госпитали, в особенности те из них, которые интересуются локальной спектроскопией и исследованиями в области функциональной томографии, сохранят интерес к сильным магнитным полям, но и они будут покупать томографы со слабыми и средними полями в качестве вторых и третьих установок для массовых обследований ( и разгрузки от них большого томографа).
Если бы все это было известно и принято во внимание 8-10 лет назад, то гораздо больше пациентов могли бы получить доступ к МР-томографии, и медицинское МР-оборудование могло быть не столь дорогим, как сегодня.